Distributional Soft Actor-Critic: Off-Policy Reinforcement Learning for Addressing Value Estimation Errors

Image credit: original paper

Abstract

In reinforcement learning (RL), function approximation errors are known to easily lead to the Q-value overestimations, thus greatly reducing policy performance. This article presents a distributional soft actor-critic (DSAC) algorithm, which is an off-policy RL method for continuous control setting, to improve the policy performance by mitigating Q-value overestimations. We first discover in theory that learning a distribution function of state-action returns can effectively mitigate Q-value overestimations because it is capable of adaptively adjusting the update step size of the Q-value function. Then, a distributional soft policy iteration (DSPI) framework is developed by embedding the return distribution function into maximum entropy RL. Finally, we present a deep off-policy actor-critic variant of DSPI, called DSAC, which directly learns a continuous return distribution by keeping the variance of the state-action returns within a reasonable range to address exploding and vanishing gradient problems. We evaluate DSAC on the suite of MuJoCo continuous control tasks, achieving the state-of-the-art performance.

Publication
In IEEE Transactions on Neural Networks and Learning Systems (IF=14.2)

(* indicates equal contribution.)